

Asparagus anosmia

Asparagus officinalis

RESEARCH

Sniffing out significant "Pee values": genome wide association study of asparagus anosmia

Sarah C Markt,¹ Elizabeth Nuttall,¹ Constance Turman,⁴ Jennifer Sinnott,¹.⁵ Eric B Rimm,¹.².6 Ethan Ecsedy,² Robert H Unger,¹ Katja Fall,¹.².9 Stephen Finn,¹0 Majken K Jensen,².6 Jennifer R Rider,¹.¹¹¹ Peter Kraft,¹.³.4 Lorelei A Mucci¹.6.9

Department of Epidemiology, Harvard TH Oran School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA

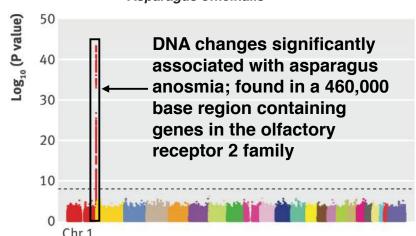
ABSTRACT OBJECTIVE

OBJECTIVE

To determine the inherited factors associated with the ability to smell asparagus metabolites in urine.

DESIGN Genome wide association study

SETTING

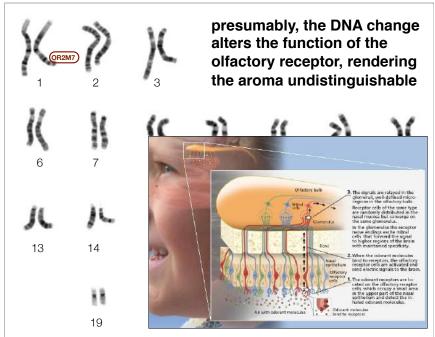

Introduction

In 1781 Benjamin Franklin remarked, "a few stems of asparagus eaten, shall give our urine a disagreeable odour." ¹³ The consequence of asparagus consumption has been a topic of both public and private discussion, with Proust's observation of asparagus spears perhaps the most poetic, "they played... at transforming my

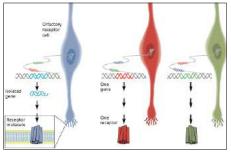
Among 6909 participants, 39.8% (n=2748) strongly agreed that they could perceive a distinct odor in their urine after eating asparagus and 60.3% (n=4161) said they could not

Asparagus anosmia

Asparagus officinalis

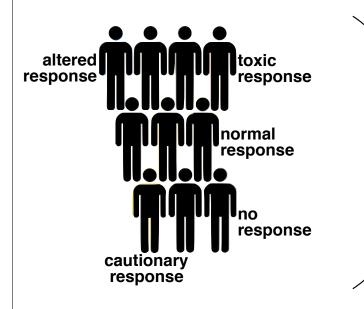


"Future replication studies are necessary before considering targeted therapies to help anosmic people discover what they are missing."


how about in humans?

OR2M7 - top candidate gene in this region

- · gene is 938 nucleotides long
- · "olfactory receptor" gene
- encodes a 312 amino acid protein



http://olfactory-system.blogspot.com/2007/02/odorant-receptors-organization-of.html

http://www.genome.gov/glossary/resources/karyotype.pdf

Pharmacogenomic Testing

Traditional drug treatment approach

same prescription and dose

Drug Effectiveness

1. ABILIFY (aripiprazole)

Schizophrenia

2. NEXIUM (esomeprazole)

Heartburn

3. HUMIRA (adalimumab)

Arthritis

4. CRESTOR (rosuvastatin)

High cholesterol

For every person they do help (green), the ten highest grossing drugs in the U.S. fail to improve the conditions of even more people (grey)

go.nature.com/4dr78f

Drug Effectiveness

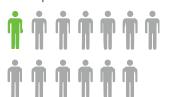
Depression

5. CYMBALTA (duloxetine) 6. ADVAIR DISKUS (fluticasone propionate)

7. ENBREL (entanercept)

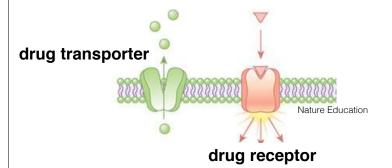
Proriasis

Crohn's disease


8. REMICADE (infliximab) 9. COPAXONE (glatiramer acetate)

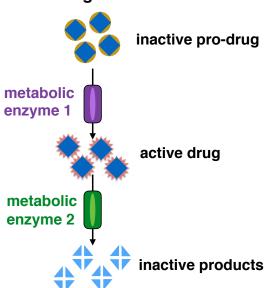
Multiple sclerosis

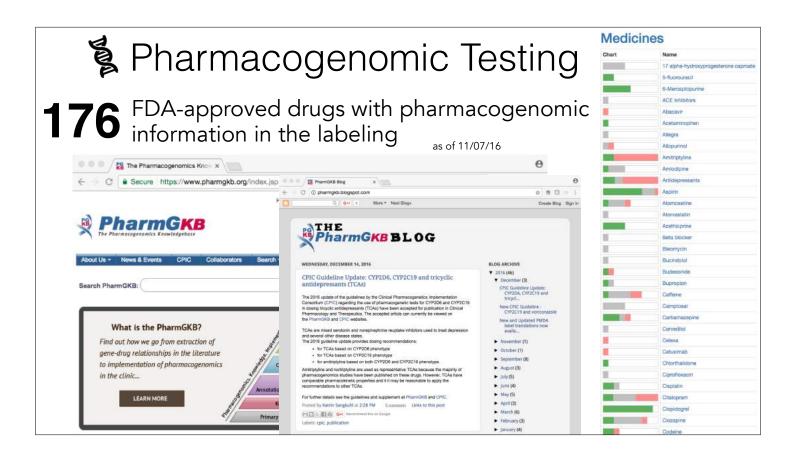
10. NEULASTA (pegfilgrastim)


Neutropenia

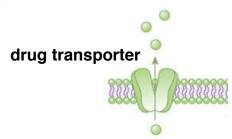
For every person they do help (green), the ten highest grossing drugs in the U.S. fail to improve the conditions of even more people (grey)

go.nature.com/4dr78f

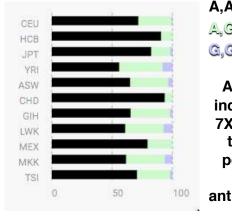

Genetic Influences



variation in the genes that encode transporters, receptors and metabolic enzymes impacts the concentration of active drugs in the body


the duration and intensity of a drug depends on the rate of metabolic conversion

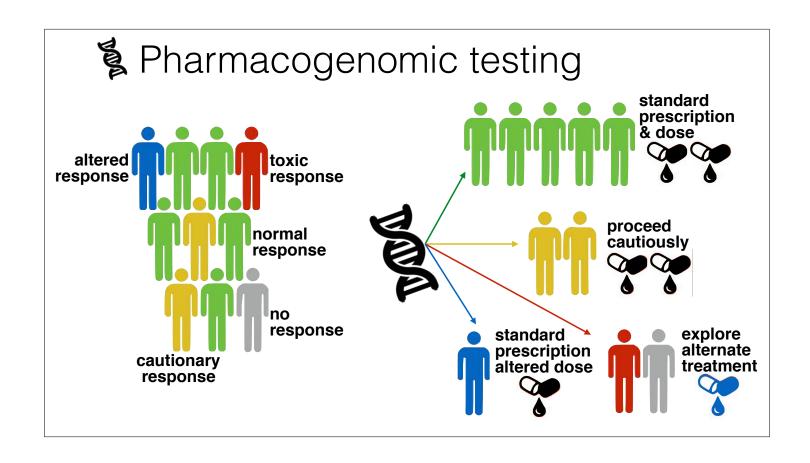
drug metabolism

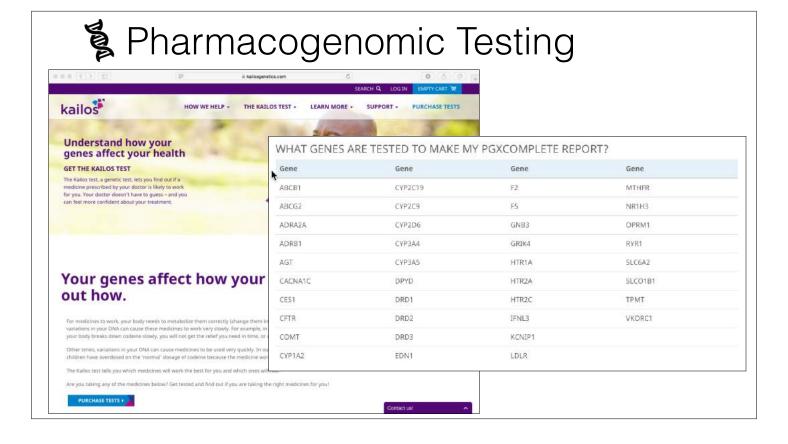


The ABCB1 gene (on chromosome 7) encodes a transporter protein that moves certain molecules across the blood-brain barrier

there are multiple DNA variants in this gene - several are associated with a better response to certain antidepressant medications

RS4148739 - DNA variant A or G
A = less effective G = greater transport


frequency across world populations



A,A genotype

A,G genotype G,G genotype

A,G and G,G individuals are 7X more likely to respond positively to certain antidepressants

As a reminder

- Cancer is a genetic disease caused by mutations in the genes that control cell growth and repair pathways.
- However, these mutations are primarily acquired, rather than inherited.
- 5-10% of breast, ovarian, colon and a few other cancers may be heavily influenced by inherited mutations, passed from generation to generation (family cancer syndromes)

Want more details? Check out the 2016 Biotech201 series on cancer at http://hudsonalpha.org/biotech-201

Two types of "cancer" genetic tests

1. predisposition testing

 Did you inherit a mutation that gives you a higher lifetime risk for cancer?

2. tumor genetic analysis

 What mutations are driving the development and progression of the existing cancer

Two types of "cancer" genetic tests

1. predisposition testing

 Did you inherit a mutation that gives you a higher lifetime risk for cancer?

Genes associated with inherited breast/ovarian cancer

the impact on cancer risk varies greatly from gene to gene - some raise lifetime risk to 70-80%, others only to approximately 15%

ATM	NBN
BARD1	PALB2
BRCA1	PMS2
BRCA2	PTEN
BRIP1	RAD50
CDH1	RAD510
CHEK2	RAD51D
EPCAM	RINT1
MLH1	STK11
MRE11A	TP53
MSH2	XRCC2
MSH6	

Two types of "cancer" genetic tests

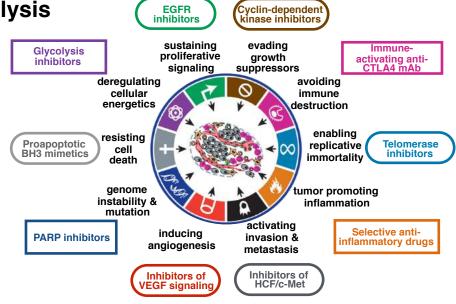
1. predisposition testing

Did you inherit a mutation that gives you a higher lifetime

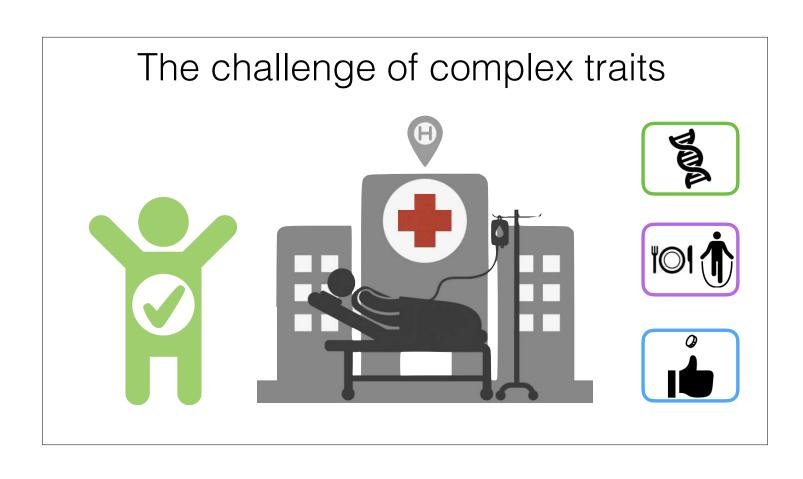
risk for cancer?

Two types of "cancer" genetic tests

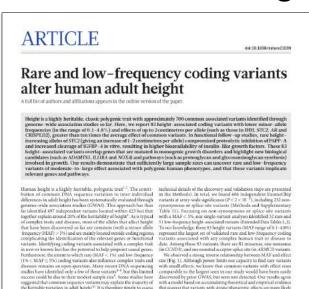
- community initiative tests for predisposition to breast/ovarian cancer
- 23 known predisposition genes
- 5 county N. AL region
- free for 30 year olds; \$129 for other adults
- over 1.500 individuals tested to date



Two types of "cancer" genetic tests

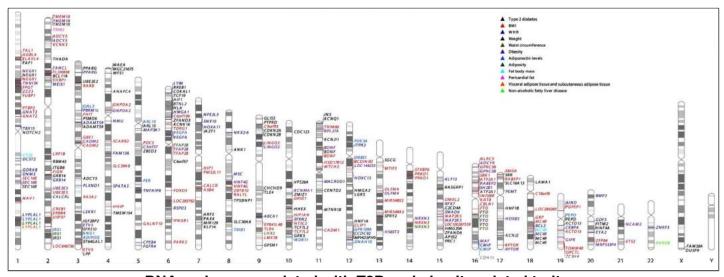

2. tumor genetic analysis

- What mutations are driving the development and progression of the existing cancer
- · can shape diagnosis, prognosis and therapeutic decision-making



The challenge of complex traits CT PENNSYLVANIA OHIO Philadelphia ILLINOIS INDIANA o Indianapolis MARYLAND City MISSOURI VIRGINIA KENTUCKY VIRGINIA Nashville TENNESSEE Charlotte ARKANSAS SOUTH AROLINA MISSISSIPPI ALABAMA GEORGIA

The challenge of complex traits



700+ genetic contributors to human height most contribute less than 1 millimeter, but a small number of may impact up to 1 inch

nutrition also a key influence on height

The challenge of complex traits

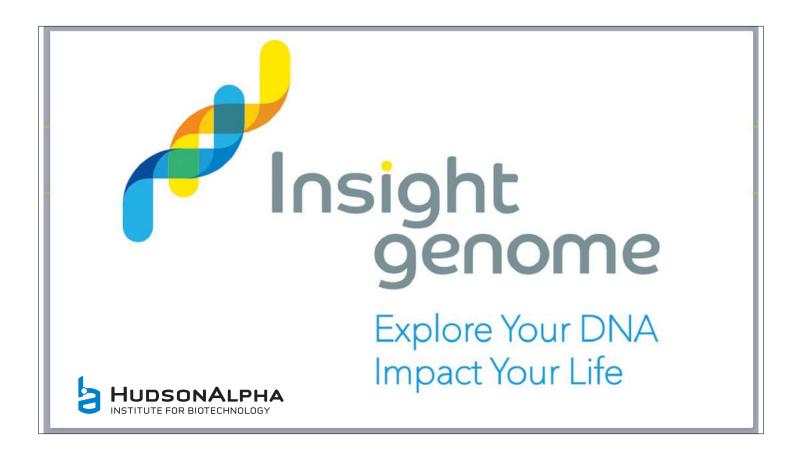
facing a similar situations for complex disorders like type 2 diabetes

DNA regions associated with T2D and obesity-related traits

Karaderi, Drong and Lindgren, Curr Diab Rep; 15:83 (2015)

Sequencing your exome/genome

Veritas Genetics


Commercially available large-scale sequencing opportunities for consumers

Genos

Pathway Genomics

It's time to put
health first.

Sequencing your exome/genome

Clinical Component

- Initial consultation at the Smith Family Clinic
- Clinical genome analysis, linked to the clinical consultation
 - · primary findings
 - secondary findings
 - pharmacogenomic results
- Follow-up clinical visit

Sequencing your exome/genome

Research Component

 Invitation to participate in a HudsonAlpha research initiative to gain additional insight into the genome

Genome Guide

- Introduction to your genome
- **Disease chapters** Rheumatoid Arthritis, Coronary Artery Disease, Macular Degeneration
- DNA variants associated with other diseases
- DNA variants linked to non-disease traits

Sequencing your exome/genome

Explore Your DNA Impact Your Life

Research Component

 Invitation to participate in a HudsonAlpha research initiative to gain additional insight into the genome

Key questions to explore

- · How is this type of information best shared?
- Is this information helpful to participants and their physicians?
- What lessons can be learned about incorporating genomic information into routine patient care?

issues associated with opportunistic/elective genome sequencing

- attitudes and expectations of healthcare providers and patients/ participants
 - limitations
 - applications
 - importance of education
- breadth of underlying datasets of genetic variants used for interpretation
- research/clinical boundaries are blurring, but they utilize different ethical frameworks

issues associated with opportunistic/elective genome sequencing

- meaningful consent balancing personal autonomy and healthcare professional's duty of care
- How far should patient/participant choice guide the disclosure of clinical findings?
- What about services that do not involve a physician?
- Who has access to the data?

Tebruary 2017 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 6:30 - 8:00 pm CT • Jackson Center

Next Week

Feb 7 what's in a genome? paternity, forensic & ancestry

Feb 14 types of genetic tests, carrier & diagnostic

Feb 21 pharmacogenomics, cancer, complex disease &

Feb 28 variant validity & relevance when to test, what lies ahead